КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Хімічний факультет

Кафедра органічної хімії

«ЗАТВЕРДЖУЮ»

Заступник декана з навчальної роботи Наталія УСЕНКО

2022 року

РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

ХІНІРІМІХ

факультет

хімія гетероциклічних сполук

для здобувачів освіти

галузь знань

10 Природничі науки

спеціальність

102 Хімія

освітній рівень

бакалавр

освітня програма

Хімія

вид дисципліни

вибіркова

Форма навчання	денна
Навчальний рік	2022/2023
Семестр	7
Кількість кредитів ECTS	3
Мова викладання, навчання	
та оцінювання	українська
Форма заключного контролю	іспит

Викладач: доц. Горічко Мар'ян Віталійович

Пролонговано: на 2023/2024 н. р	() «»	20 p
на 2024/2025 н. р	() «»	20 p.

Розробник: Горічко Мар'ян Віталійович, доц., к.х.н., доцент кафедри органічної хімії

ЗАТВЕРДЖЕНО	
Завідувач кафедри	органічної хімії
M	Володимир ХИЛЯ
Протокол № 14 від	3 червня 2022 року

Схвалено науково-методичною комісією хімічного факультету

Протокол №7 від 29 червня 2022 року

Голова науково-методичної комісії ______ Олександр РОЇК

« 29 » червня 2022 року

1. Мета дисципліни — сформувати цілісне поняття про методи синтезу та хімічні властивості базових гетероциклічних сполук, розкрити взаємозв'язок структура — властивості для головних класів гетероциклічних сполук.

2. Попередні вимоги до опанування навчальної дисципліни:

- 1. Знати основні поняття органічної хімії.
- 2. Вміти зобразити формули органічних сполук.
- 3. Володіти елементарними навичками написання органічних реакцій.
- 4. Володіти базовими знаннями загальної хімії.
- 5. Мати уявлення про основи органічної хімії гетероциклічних сполук в межах програми курсу за вибором ВНЗ «Органічна хімія ароматичних та гетероциклічних органічних сполук» (V семестр).
- **3. Анотація навчальної дисципліни.** Електронні уявлення, будова і реакційна здатність гетероциклічних сполук; застосування фізичних та фізико-хімічних методів дослідження в органічній хімії гетероциклічних сполук. Взаємозв'язок структура властивості для головних класів гетероциклічних сполук. Стратегія та тактика сучасного органічного синтезу функціоналізованих гетероциклічних сполук, механізми перетворень та властивості основних класів гетероциклічних органічних сполук.
- **4. Завдання:** розвиток теоретичних уявлень студентів про взаємозв'язок структура властивості для головних класів гетероциклічних сполук; формування спеціалізованої системи знань про особливості синтезу та хімічної поведінки гетероциклічних сполук. Згідно з вимогами Стандарту вищої освіти України (перший (бакалаврський) рівень вищої освіти, галузь знань 10 «Природничі науки», спеціальність 102 «Хімія») навчальна дисципліна спрямована на досягнення наступних загальних та спеціальних (фахових) компетентностей: ЗК1, ЗК7 та СК6, СК7.

5. Результати навчання за дисципліною:

Код	Результат навчання (1 – знати; 2 – вміти; 3 – комунікація; 4 – автономність та відповідальність)	Форми (та/або методи і технології) викладання і навчання	Методи оцінювання поточний контроль (активність під час практ. робіт та виконання дом. роботи ПтК-1, написання МКР ПтК-2), підсумковий контроль ПсК	Відсоток у підсумковій оцінці з дисципліни
1.1	Знати місце хімії гетероциклічних сполук в системі хімічних наук	лекції, самостійні	ПтК-2, ПсК	5
1.2	Знати класифікацію гетероциклічних сполук та особливості електронної будови молекул, що відносяться до гетероциклічних органічних сполук	лекції, практичні, самостійні	ПтК-1, ПтК-2, ПсК	10
1.3	Знати методи синтезу та хімічні властивості гетероциклічних сполук	лекції, практичні, самостійні	ПтК-1, ПтК-2, ПсК	25
2.1	Знайти у першоджерелах інформацію про методи одержання гетероциклічних сполук і їх фізичні та хімічні властивості	лекції, практичні, самостійні	ПтК-1, ПтК-2, ПсК	10

	T		Γ	
2.2	Здійснити критичний аналіз інформації щодо синтезу та властивостей гетероциклічних похідних	практичні, самостійні	ПтК-1	15
2.3	Здійснювати планування синтезу гетероциклічних похідних та прогнозування їх фізико-хімічних властивостей	лекції, практичні, самостійні	ПтК-1, ПтК-2, ПсК	15
3.1	Здатність використовувати сучасні інформаційно- комунікаційні технології при спілкуванні, а також для збору, аналізу, обробки, інтерпретації інформації у галузі органічної хімії гетероциклічних сполук	лекції, практичні, самостійні	ПтК-1, ПтК-2, ПсК	5
3.2	Здатність виконувати передбачені навчальною програмою завдання у співпраці з іншими виконавцями	практичні, самостійні	ПтК-1	5
4.1	Уміти самостійно зафіксувати, проаналізувати та інтерпретувати представлені викладачем дані з хімії гетероциклічних сполук	практичні, самостійні	ПтК-1, ПтК-2, ПсК	5
4.2	Дотримуватися правил наукової етики та доброчесності в процесі критичної обробки наявної та створенні нової інформації у галузі органічної хімії гетероциклічних сполук	практичні, самостійні	ПтК-1	5

6. Співвідношення результатів навчання дисципліни (РНД) із програмними результатами навчання (ПРН):

РНД (код) ПРН	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	4.1	4.2
P05. Розуміти зв'язок між будовою та властивостями речовин.	+	+	+	+						
Роб. Розуміти періодичний закон та періодичну систему елементів, описувати, пояснювати та передбачати властивості хімічних елементів та сполук на їх основі.	+	+	+	+						
Р11. Описувати властивості аліфатичних, ароматичних, гетероциклічних та органометалічних сполук, пояснювати природу та поведінку функціональних груп в органічних молекулах.		+	+	+	+	+			+	

РНД (код) ПРН	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	4.1	4.2
Р12. Знати основні шляхи синтезу в органічній хімії, включаючи функціональні групові взаємоперетворення та формування зв'язку карбон-карбон, карбон-гетероатом.		+	+	+	+	+				
P21. Здійснювати моніторинг та аналіз наукових джерел інформації та фахової літератури.				+			+	+		+

7. Схема формування оцінки

7.1. Форми оцінювання студентів:

Семестрове оцінювання:

Максимальна/мінімальна кількість балів, які можуть бути отримані студентом: **60 балів** / **36 балів**, а саме:

- 1. Активність під час занять реферат (або доповідь) та виконання самостійної домашньої роботи: РН 2.2, 3.2, 4.2 (повністю), РН 1.2, 1.3, 2.1, 2.3, 3.1, 4.1 (частково) **40** / **24 бали**
- 2. Контрольна робота: РН 1.1 (повністю), 1.2, 1.3, 2.1, 2.3, 3.1, 4.1 (частково) **20** / **12 балів**.

Підсумкове оцінювання (у формі іспиту):

Максимальна/мінімальна кількість балів, які можуть бути отримані студентом: **40 балів** / **24 бали**.

Результати навчання які будуть оцінюватись: РН 1.1, 1.2, 1.3, 2.1, 2.3, 3.1, 4.1.

Форма проведення: письмова робота.

Види завдань: 2 або 3 теоретичні питання, 1 задача.

Для отримання загальної позитивної оцінки з дисципліни оцінка за іспит не може бути меншою 24 балів.

Студент допускається до іспиту, якщо протягом семестру він:

набрав не менше, ніж 36 балів;

виконав і вчасно здав реферат (доповідь);

написав контрольну роботу.

7.2. Організація оцінювання:

Терміни проведення оцінювання:

Персональні завдання для написання реферату (підготовки доповіді) студенти отримують не пізніше 3 тижня семестру;

Здавання реферату (доповіді): не пізніше, ніж за тиждень до початку сесії;

Контрольна робота: не раніше 8 тижня семестру;

Оцінювання самостійної роботи: впродовж семестру.

Студенти мають право на одне перескладання контрольної роботи у визначений викладачем термін.

7.3. Шкала відповідності оцінок

Оцінка (за національною шкалою) / National grade	Рівень досягнень / Marks
Відмінно / Excellent	90-100
Добре / Good	75-89
Задовільно / Satisfactory	60-74
Незадовільно / Fail	0-59

8. Структура навчальної дисципліни.

Тематичний план лекцій і практичних занять

№ теми	Назва теми	лекції	семі- нари	сам. робо та
	П'ятичленні гетероцикли			
1	Вступ. Номенклатура гетероциклічних сполук. П'ятичленні гетероцикли з одним гетероатомом. Фуран, пірол, тіофен. Фізичні властивості та методи одержання	2		
	1,4-Дикарбонільні сполуки в синтезі фурану, піролу, тіофену		1	
	Іменні реакції в хімії фурану, піролу, тіофену			5
2	П'ятичленні гетероцикли з одним гетероатомом. Фуран, пірол, тіофен. Будова та хімічні властивості	3		
	Спектральна ідентифікація похідних фурану, піролу, тіофену		2	
	Фуран, пірол, тіофен в реакціях електрофільного заміщення			5
3	Індол. Хімічні властивості та методи одержання похідних. Поширення похідних індолу у природі	3		
	Спектральна ідентифікація похідних індолу		1	
	Іменні реакції в хімії індолу			5
4	П'ятичленні гетероцикли з двома атомами азоту. Піразол та імідазол. Хімічні властивості, методи одержання.	3		
	Дикарбонільні сполуки в синтезі піразолу та імідазолу		2	
	Іменні реакції в хімії піразолу та імідазолу			5
5	П'ятичленні гетероцикли з двома гетероатомами. Тіазол, оксазол. Ізотіазол, ізооксазол. Хімічні властивості та методи одержання похідних	3		
	Спектральна ідентифікація похідних тіазолу, оксазолу, ізотіазолу, ізооксазолу		1	
	Іменні реакції в хімії піразолу та імідазолу			5
	Шестичленні гетероцикли			
6	Шестичленні гетероцикли з одним гетероатомом. Піридин. Електронна будова, фізичні властивості, методи одержання. Хімічні властивості піридину	2		
	Спектральна ідентифікація похідних піридину		1	
	Іменні реакції в хімії піридину. Біологічно активні сполуки з ядром піридину			5
7	N-Оксид піридину. Реакції електрофільного та нуклеофільного заміщення.	3		
	Відмінність хімічних властивостей піридину та його <i>N</i> -оксиду		2	

	N-Оксид піридину в органічному синтезу			4
8	Хінолін. Хімічні властивості та методи одержання похідних. Ізохінолін. Хімічні властивості та методи одержання похідних	3		
	Спектральна ідентифікація похідних хіноліну та ізохіноліну. Хінолін та ізохінолін в реакціях електрофільного та нуклеофільного заміщення		2	
	Іменні реакції в хімії хіноліну та ізохіноліну. Біологічно активні сполуки з ядром хіноліну та ізохіноліну			5
9	Шестичленні гетероцикли з двома атомами азоту. Піридазин та піразин. Хімічні властивості, методи одержання	3		
	Спектральна ідентифікація похідних піразину та піридазину		1	
	Бензоконденсовані похідні піразину та піридазину. Біологічно активні сполуки з ядром піразину та піридазину			4
10	Шестичленні гетероцикли з двома атомами азоту. Піримідин. Хімічні властивості, методи одержання. МКР	3		
	Спектральна ідентифікація похідних піримідину		1	
	Поширення похідних піримідину в природі.			5
	УСЬОГО	28	14	48

Загальний обсяг 90 год, в тому числі:

Лекції – **28** год.

Семінарських – 14 год.

Консультації за проханням студентів.

Самостійна робота - 48 год.

9. Рекомендовані джерела

Основні:

- 1. Acheson R.M. An Introduction to the Chemistry of Heterocyclic Compounds. Interscience Publishers, 1967. 408 p.
- 2. Joule J.A., Mills K. Heterocyclic chemistry. London: Blackwell Science, 2000. 589 p.
- 3. Горічко М.В. Металорганічні похідні гетероциклічних сполук. Навч. посібник для студентів хімічного факультету КНУ. К.: ВПЦ "Київський університет", 2008. 33 с.
- 4. Gilchrist T.L. Heterocyclic Chemistry; 3rd ed. Pearson College Div., 1997. 414 p.

Додаткові:

- 1. Smith M.B. Organic synthesis. McGRAW-HILL, inc. New York, Sydney, Tokyo, Toronto. International editions, 1994. 1595 p.
- 2. Corey E.J., Chang X-M. The logic of chemical synthesis. Wiley. New York, 1989. 436 p.
- 3. Smith W.A., Bochkov A.F., Caple R. Organic Synthesis the Science behind the Art. Cambridge, 1998. 477 p.
- 4. Войтенко З.В. Ізоіндоли в умовах реакції Дільса Альдера (Частина перша). В-во ПП Лисенко М.М. Ніжин, 2021. 232 с.
- 5. Хиля В.П., Москвіна В.С., Шабликіна О.В. Препаративна хімія флавоноїдів. Київ: ВПЦ "Київський університет", 2021. 157 с.

а також інтернет-ресурси.