КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Хімічний факультет

Кафедра органічної хімії

«ЗАТВЕРДЖУЮ»	Україна ж
Заступник декана з навчальної роботи ——————————————————————————————————	Хімічний факультет факультет
« <u>ЗС» СС</u> 2022 року	**************************************

РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ СИНХРОННІ ПРОЦЕСИ

для здобувачів освіти

галузь знань	10 Природничі науки
спеціальність	102 Хімія
освітній рівень	магістр
освітня програма	Хімія
вид дисципліни	вибіркова

 Форма навчання
 денна

 Навчальний рік
 2022/2023

 Семестр
 III

 Кількість кредитів ЕСТЅ
 3

 Мова викладання, навчання та оцінювання
 українська

 Форма заключного контролю
 іспит

Розробник: Войтенко Зоя Всеволодівна, проф., д.х.н., професор кафедри органічної хімії

ЗАТВЕРДЖЕНО

Завідувач кафедри органічної хімії

Володимир

Протокол № 14 від 3 червня 2022 року

Схвалено науково-методичною комісією хімічного факультету

Протокол №7 від 29 червня 2022 року

Голова науково-методичної комісії Олександр РОЇК

« 29 » червня 2022 року

1. Мета дисципліни — навчити магістрів засвоєнню дуже цікавого розділу хімії, де хімічні перетворення (утворення та розрив хімічних зв'язків) відбуваються узгоджено (синхронно).

2. Попередні вимоги до опанування навчальної дисципліни:

- 1. Знати органічну хімії на рівні бакалавра за спеціальністю «Хімія».
- 2. Володіти навичками написання органічних реакцій.
- 3. Мати уявлення про механізми органічних реакції, їх класифікації на рівні бакалавра за спеціальністю «Хімія».
- 4. Володіти навичками спектральної ідентифікації органічних речовин на рівні бакалавра за спеціальністю «Хімія».
- **3. Анотація навчальної дисципліни.** В рамках курсу «Синхронні процеси» викладається поглиблений курс синхронних хімічних реакцій, їх класифікацій, сучасних теоретичних принципів, синтетичного потенціалу та можливостей практичного використання.
- **4. Завдання:** ознайомлення студентів із принципами перебігу синхронних реакцій: термічних та фотохімічних; розвиток у студентів навичок розрізняти вплив будови вихідних речовин та умов реакції на стереохімічну будову продуктів.

Навчальна дисципліна спрямована на досягнення наступних загальних та спеціальних (фахових) компетентностей: ЗК1 (знання та розуміння предметної області та розуміння професійної діяльності), ЗК2 (здатність вчитися і оволодівати сучасними знаннями), ЗК3 (здатність до абстрактного мислення, аналізу та синтезу), ЗК14 (здатність до пошуку, критичного аналізу та обробки інформації з різних джерел), ФК1 (здатність використовувати закони, теорії та концепції хімії у поєднанні із відповідними математичними інструментами для опису природних явищ), ФК6 (здатність здобувати нові знання в галузі хімії та інтегрувати їх із уже наявними), ФК8 (здатність формулювати нові гіпотези та наукові задачі в галузі хімії, вибирати напрями та відповідні методи для їх розв'язання на основі розуміння сучасної проблематики досліджень в галузі хімії та беручи до уваги наявні ресурси).

5. Результати навчання за дисципліною:

Код	Результат навчання (1 – знати; 2 – вміти; 3 – комунікація; 4 – автономність та відповідальність)	Форми (та/або методи і технології) викладання і навчання	Методи оцінювання поточний контроль (активність під час занять та виконання дом. роботи ПтК1, написання КР ПтК-2), підсумковий контроль ПсК	Відсоток у підсумковій оцінці з дисципліни
1.1	Легке користування основними поняттями курсу; розуміння основних принципів перебігу синхронних процесів, доказу будови продуктів та інтермедіатів	лекції, самостійні	ПтК-2, ПсК	10
1.2	Знання теорії перециклічних реакцій. Пояснення дозволеності та забороненості процесів з використання: теорії граничних орбіталей, кореляційних діаграм, ароматичності за Хюккелем та Мьобіусом	лекції, самостійні	ПтК-1, ПтК-2, ПсК	20

1.3	Знання класифікації реакцій та конкретних прикладів різних типів циклоприєднання, сигматропних перегрупувань, циклізацій, тощо	лекції, самостійні	ПтК-1, ПтК-2, ПсК	20
2.1	Уміння планувати синтез органічних сполук із використанням синхронних процесів	лекції, самостійні	ПтК-1, ПтК-2, ПсК	5
2.2	Уміння визначити будову продуктів синхронних реакцій	лекції, самостійні	ПтК-1	10
2.3	Уміння передбачати та інтерпретувати результати синхронних реакцій	лекції, самостійні	ПтК-1, ПтК-2, ПсК	10
3.1	Уміння працювати з сучасними статтями та оглядами з синхронних реакцій	самостійні	ПтК-1, ПтК-2, ПсК	5
3.2	Здатність виконувати передбачені навчальною програмою завдання у співпраці з іншими виконавцями	самостійні	ПтК-1, ПтК-2, ПсК	5
4.1	Уміння самостійно зафіксувати, проаналізувати та інтерпретувати дані, що стосуються синхронних реакцій	самостійні	ПтК-1, ПтК-2	10
4.2	Дотримання правил наукової етики та доброчесності в процесі критичної обробки наявної та створенні нової інформації у галузі синхронних реакцій	самостійні	ПтК-1	5

6. Співвідношення результатів навчання дисципліни (РНД) із програмними результатами навчання (ПРН):

Результати навчання	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	4.1	4.2
дисципліни										
Програмні результати навчання										
P1. Знати та розуміти наукові концепції та сучасні теорії хімії, а також фундаментальні основи суміжних наук	+	+	+							
Р2. Глибоко розуміти основні факти, концепції, принципи і теорії, що стосуються предметної області, опанованої у ході магістерської програми, використовувати їх для розв'язання складних задач і проблем, а також проведення досліджень з відповідного напряму хімії	+	+	+	+	+	+				

Результати навчання дисципліни	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	4.1	4.2
Програмні результати навчання										
Р3. Застосовувати отримані знання і розуміння для вирішення нових якісних та кількісних задач хімії.	+	+	+	+			+	+		
P14. Інтерпретувати експериментально отримані дані та співвідносити їх з відповідними теоріями в хімії.				+	+	+			+	+

7. Схема формування оцінки

7.1. Форми оцінювання студентів:

Семестрове оцінювання:

Максимальна/мінімальна кількість балів, які можуть бути отримані студентом: **60 балів** / **36 балів**, а саме:

- 1. Активність під час занять та виконання самостійної домашньої творчої роботи: PH 2.2, 3.2, 4.2 (повністю), PH 1.1, 1.3, 2.1, 2.3, 3.1, 4.1 (частково) **30 / 18 балів**
- 2. Контрольні роботи: PH 1.1 (повністю), 1.2, 1.3, 2.1, 2.3, 3.1, 4.1 (частково) **30 / 18 балів**.

Підсумкове оцінювання (у формі іспиту):

Максимальна/мінімальна кількість балів, які можуть бути отримані студентом: **40 балів** / **24 бали**.

Результати навчання які будуть оцінюватись: РН 1.1, 1.2, 1.3, 2.1, 2.3, 3.1.

Форма проведення: письмова робота.

Види завдань: 3 теоретичні питання.

Для отримання загальної позитивної оцінки з дисципліни оцінка за іспит не може бути меншою 24 балів.

Студент допускається до іспиту, якщо протягом семестру він:

набрав не менше, ніж 36 балів;

виконав і вчасно здав самостійну домашню творчу роботу;

написав контрольні роботи.

7.2. Організація оцінювання:

Терміни проведення оцінювання:

Персональні завдання для написання самостійної домашньої творчої роботи студенти отримують не пізніше 3 тижня семестру;

Здавання самостійної домашньої творчої роботи: не пізніше, ніж за тиждень до початку сесії:

Контрольні роботи: не раніше 4 тижня семестру;

Оцінювання інших видів роботи: впродовж семестру.

Студенти мають право на одне перескладання контрольної роботи у визначений викладачем термін.

7.3. Шкала відповідності оцінок

Оцінка (за національною шкалою) / National grade	Рівень досягнень / Marks
Відмінно / Excellent	90-100
Добре / Good	75-89
Задовільно / Satisfactory	60-74
Незадовільно / Fail	0-59

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ТЕМАТИЧНИЙ ПЛАН ЛЕКЦІЙ І САМОСТІЙНОЇ РОБОТИ

No		К-сть го	ЭДИН		
п/п	Назва лекції	лекції	C/P		
	Частина 1				
1	Тема 1. Теорія синхронних процесів. Визначення. Класифікації та теорії синхронних процесів. Історичний аспект. Видатні імена в цьому розділі хімії. Правила Вудворда — Гофмана для термічних процесів. Правила Вудворда — Гофмана для фотохімічних процесів.	2	2		
2	Тема 2. Дозволені та заборонені процеси. Описання різними методами. Методи граничних орбіталей. Кореляційні діаграми, як метод визначення дозволеності реакції. Приклади. Теорія ароматичності перехідного стану. Ароматичність за Хюкелем та Мьобіусом.	2	2		
3	Тема 3. Стерео- та регіоселективність у синхронних процесах. Приклади. Залежність будови продукту від типу синхронного процесу. Конротаторне та дисротаторне замикання циклу. Дозволеність процесу замикання. Ілюстрація правил Вудворда — Гофмана. Супра-супра та супра-антара циклоприєнання. Стереохімія перегрупувань. Супра-супра та супра-антара-зміщення водню та інших груп.	2	2		
4	Тема 4. Кінетичний і термодинамічний контроль в реакціях циклоприєднання. Реакція Дільса - Альдера. Класифікація. Реакції 1,3-диполярного циклоприєднання. Теоретичні засади. Приклади.	2	2		
5	Тема 5. Теоретичні основи оберненої реакції Дільса - Альдера. Дієн – акцептор, дієнофіл – донор. Біфункціональна НОМО (дієнофіл) - LUMO (дієн) активація для оберненої реакції Дільса - Альдера. Приклади. Контрольна робота 1	2	2		
	Частина 2 Синхронні асиметричні реакції				
6	Тема 6. Стереоселективні синхронні процеси. Асиметричний синтез. Інструменти асиметричного синтезу для узгоджених реакцій.	4	2		
7	Тема 7. Асиметричний каталіз при дослідженні сучасних синхронних процесів. <i>Контрольна робота 2</i>	2	2		

	Частина 3 Синхронні процеси в гетероциклічних сполуках та для синтезу гетероциклічних сполук	c	
8	Тема 8. Специфіка реакцій циклоприєднання в різних гетероциклічних системах. Реакції циклоприєднання в піридинах і піримідинах. Реакції циклоприєднання в системі <i>N</i> -оксиду піридину. Внутрішньомолекулярне [2+4] циклоприєднання в системі ізохіноліну. Докази будови аддуктів циклоприєднання. Приклади.	2	2
9	Тема 9. Реакції циклоприєднання в п'ятичленних гетероциклічних системах. Відносна реакційна здатність в реакціях Дільса-Альдера. Реакції піролів, фуранів, тіофенів та п'ятичлених гетеро циклів з двома гетероатомами. [2+2] циклоприєднання для фуранових систем. Приклади. Пояснення. [4+2] та [4+3] циклоприєднання в фуранах.	2	2
10	Тема 10.Реакції циклоприєднання в оксазолах. Докази будови аддуктів циклоприєднання. Приклади.	2	2
11	Тема 11. Реакція Дільса - Альдера в простих ізоіндолах. Побічні процеси. Залежність конкурентних процесів від будови вихідних ізоіндолів. Встановлення будови ендо та екзо аддуктів. Реакція циклоприєднання в 1-аміноізоіндолі. Принцип Куртіна — Гамета для пояснення перебігу реакції циклоприєднання та продуктів перегрупування. Класифікація дієнофілів. Реакції різних типів ізоіндолів з малеїнімідами, дегідробензенами, ацетиленами тощо.	2	2
12	Тема 12. Реакція циклоприєднання в конденсованих ізоіндолах та перегрупування на їх основі. Перегрупування першого типу на прикладі взаємодії піридо[2,1-а]ізоіндолу з похідними малеїніміду. Докази будови перегрупованих аддуктів. Швидка та повільна рівновага. Специфіка стереохімічної будови. Атроподіастеріомерія та 1,5-сигматропне зміщення — динамічні процеси у розчинах. Залежність спектрів ЯМР від температури. Пояснення. Перегрупування першого типу в разі використання інших конденсованих ізоіндолів.	4	4
13	Тема 13. Перегрупування другого типу на прикладі взаємодії 2,4-диметилпіридо[2,1-а]ізоіндолу з похідними малеїніміду. Докази будови аддуктів циклоприєднання. Приклади. Перебіг реакції ізоіндолохіназолонів з похідними малеїніміду в співвідношенні 1:1 та 1:2. Трициклічні 7-азабензонорборнени. Перегрупування третього типу на прикладі взаємодії ізоіндолохіназолону з похідними малеїніміду. Реакції з гетероаналогами ізоіндолохіназолонів. Спільне та відмінне в перегрупуваннях першого та другого типів у конденсованих по грані а ізоіндолах. Контрольна робота 3 Усього	30	2
	Розбір творчих робіт, що виконувалися студентами	30	32
	Підсумкова модульна контрольна робота		
	УСЬОГО	30	60

Загальний обсяг 90 год., в тому числі: Лекції — 30 год. Самостійна робота – 60 год.

9. Рекомендовані джерела

Основні:

- 1. Матеріали лекцій З.В. Войтенко (студентам видається електронний варіант презентації кожної лекції).
- 2. З.В. Войтенко Ізоіндоли в умовах реакції Дільса Альдера (Частина перша). Видавництво ПП Лисенко М.М. Ніжин, 2021. 232 с.
- 3. О.О. Григоренко, О.В. Шабликіна. Сучасні методи органічного синтезу: підручник для студ. хім. ф-ту. К.: ВПЦ "Київський університет", 2020. 572 с.
- 4. F.A. Carey, R.J. Sundberg. Advanced Organic Chemistry. Part A. Structure and Mechanisms. 5th Ed. Springer, 2007, 212 p.
- 5. M. J. S. Dewar. Aromaticity and pericyclic reactions // Angew. Chem. Int. Ed. Engl. 1971. Vol. 10. P. 761.
- 6. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 5th ed by M. B. Smith and J. March. Wiley Interscience: New York. 2001. 2112 p.
- 7. Сучасні огляди з реакцій циклоприєднання та оригінальні публікації з реакцій циклоприєднання в гетероциклічних сполуках.

Додаткові:

Інтернет ресурси. Оригінальні статті та огляди.